Over 161 extinct members and three major evolutionary radiations of the order Proboscidea have been recorded. The earliest proboscids, the African Eritherium and Phosphatherium of the late Paleocene, heralded the first radiation. The Eocene included anthracobunids from the Indian subcontinent and Numidotherium, Moeritherium and Barytherium from Africa. These animals were relatively small and aquatic. Later on, genera such as Phiomia and Palaeomastodon arose; the latter likely inhabited forests and open woodlands. Proboscidean diversity declined during the Oligocene. One notable species of this epoch was Eritreum melakeghebrekristosi of the Horn of Africa, which may have been an ancestor to several later species. The beginning of the Miocene saw the second diversification, with the appearance of the deinotheres and the mammutids. The former were related to Barytherium, lived in Africa and Eurasia,while the latter may have descended from Eritreum and spread to North America.
Mounted skeleton of early proboscid Moeritherium in Japan
The second radiation was represented by the emergence of the gomphotheres in the Miocene, which likely evolved from Eritreum and originated in Africa, spreading to every continent except Australia and Antarctica. Members of this group included Gomphotherium and Platybelodon. The third radiation started in the late Miocene and led to the arrival of the elephantids, which descended from, and slowly replaced, the gomphotheres. The African Primelephas gomphotheroides gave rise to Loxodonta, Mammuthus and Elephas. Loxodonta branched off earliest, around the Miocene and Pliocene boundary, while Mammuthus and Elephas diverged later during the early Pliocene. Loxodonta remained in Africa, while Mammuthus and Elephas spread to Eurasia, and the former reached North America. At the same time, the stegodontids, another proboscidean group descended from gomphotheres, spread throughout Asia, including the Indian subcontinent, China, southeast Asia and Japan. Mammutids continued to evolve into new species, such as the American mastodon.
Woolly mammoth model at the Royal BC Museum, Victoria, British Columbia
At the beginning of the Pleistocene, elephantids experienced a high rate of speciation. Loxodonta atlantica became the most common species in northern and southern Africa but was replaced by Elephas iolensis later in the Pleistocene. Only when Elephas disappeared from Africa did Loxodonta become dominant once again, this time in the form of the modern species. Elephas diversified into new species in Asia, such as E. hysudricus and E. platycephus; the latter the likely ancestor of the modern Asian elephant.Mammuthus evolved into several species, including the well-known woolly mammoth. In the Late Pleistocene, most proboscidean species vanished during the Quaternary glaciation which killed off 50% of genera weighing over 5 kg (11 lb) worldwide.
Proboscideans experienced several evolutionary trends, such as an increase in size, which led to many giant species that stood up to 4 m (13 ft) tall. As with other megaherbivores, including the extinct sauropod dinosaurs, the large size of elephants likely developed to allow them to survive on vegetation with low nutritional value. Their limbs grew longer and the feet shorter and broader. Early proboscideans developed longer mandibles and smaller craniums, while more advanced ones developed shorter mandibles, which shifted the head's centre of gravity. The skull grew larger, especially the cranium, while the neck shortened to provide better support for the skull. The increase in size led to the development and elongation of the mobile trunk to provide reach. The number of premolars, incisors and canines decreased. The cheek teeth (molars and premolars) became larger and more specialised. The upper second incisors grew into tusks, which varied in shape from straight, to curved (either upward or downward), to spiralled, depending on the species. Some proboscideans developed tusks from their lower incisors. Elephants retain certain features from their aquatic ancestry such as their middle ear anatomy and the internal testes of the males.
There has been some debate over the relationship of Mammuthus to Loxodonta or Elephas. Some DNA studies suggest Mammuthus is more closely related to the former, while others point to the latter. However, analysis of the complete mitochondrial genome profile of the woolly mammoth (sequenced in 2005) supports Mammuthus being more closely related to Elephas. Morphological evidence supports Mammuthus and Elephas as sister taxa, while comparisons of protein albumin and collagen have concluded that all three genera are equally related to each other. Some scientists believe a cloned mammoth embryo could one day be implanted in an Asian elephant's womb.
Không có nhận xét nào:
Đăng nhận xét